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Final Report 

Rapidly Customizable Spoken Dialogue Systems 

Florida Institute for Human and Machine Cognition 

1. Executive Summary 

Building a robust spoken dialogue system for a new application, task, or domain currently re- 
quires considerable effort, including substantial efforts in data collection, building language 
models, grammar/parser development, building a custom dialogue manager, and developing the 
connection to the system's "back-end" systems (e.g., a database query or knowledge based sys- 
tem). This project developed key parts of a technology base upon which spoken dialogue sys- 
tems can be rapidly constructed for new domains. Our approach involves building generic com- 
ponents (i.e., ones that apply in any practical domain) for all stages of spoken dialogue under- 
standing, and developing techniques for rapidly customizing the generic components to new do- 
mains. To achieve this goal we made progress in several important areas: (1) developing a ge- 
neric domain-independent grammar of spoken English together with techniques for optimizing 
parser performance for specific domains, (2) a domain independent representation of semantic 
meaning with an ontology mapping framework that allows the user to define relatively simple 
mapping rules to the domain-specific communication/representation language, and (3) a domain- 
general collaborative problem solving framework that enables rapid construction of the dialogue 
agents, and provides the link to domain-specific reasoning capabilities. 

During this project, we used the generic technology developed to enable the construction of a 
dialogue-based task learning system called PLOW. A paper based on this system won the out- 
standing paper award at the annual conference of the Association for the Advancement of Artifi- 
cial Intelligence (AAAI) in 2007 (Allen et al, 2007). A core component of that system is a 
domain-general deep language understanding system. A key accomplishment in this effort was 
developing techniques to enable broad-coverage deep understanding by taking advantage of 
many recent developments in statistical techniques and corpora. Typically used only for shallow 
understanding. Our preliminary experiments on parsing previously unseen text indicates great 
promise for the work (Allen et al, 2008). 

In the remainder of this report, we describe these accomplishments in more detail. 

2. Broad-Coverage Deep Natural Language Understanding 

Deep language understanding involves mapping language to expressions capturing its intended 
meaning, in terms of concepts and relations in an ontology that supports reasoning. Deep under- 
standing is needed in many applications, including dialogue-based human-computer interfaces to 
intelligent systems/agents, tutoring and advice-giving systems, systems that learn from instruc- 
tion, and systems that learn from reading. 

There seems to be a consensus in the field that broad-coverage, high-accuracy deep parsing is 
currently not feasible. We do not believe this is the case and discuss here the core generic tech- 

1 
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Figure I: The LF graph for "The three small dogs frequently eat hones " 

nologies we developed for deep semantic processing of natural language. In order to attain high- 
accuracy broad-coverage deep processing, we augmented the core system with statistical proc- 
essing to aid in disambiguation, and large-scale lexical resources to extend the lexicon. In this 
way, the deep understanding system can be guided by a wide range of advice derived from statis- 
tical language processing, including named-entity recognizers, statistical parsers, word sense dis- 
ambiguation techniques and semantic role identification, plus a large base of shallow generic 
knowledge. In other words, the deep parser provides the framework to integrate all the results 
from a diverse range of statistical models into a consistent deep logical form. Initial experiments 
suggest that this approach has great promise. 

The Logical Form 

The logical form (LF) is the semantic representation language produced by the parser. It is de- 
signed to be an expressive, yet intuitive, formalism for expressing sentence logical form. In de- 
signing the LF, we had multiple considerations: (1) it needs to be expressive, providing good 
coverage of the complex semantic phenomena in language, including modal operators, general- 
ized quantifiers, and underspecified scoping constraints (cf MRS (Copestake et al., 2005)); (2) it 
needs to be fully indexed into the word senses in the semantic ontology, as opposed to using un- 
interpreted predicates found in many logical forms; (3) it needs to support robust processing of 
sentence fragments that are common in speech; (4) it needs to support the implementation of 
ontology-mapping rules; and (5) it needs to be understandable to humans - readability of formal- 
isms is critical for debugging and analysis. 

We define the LF in its graphical form. Besides being more intuitive, the graphical form allows 
interesting comparisons to approaches that produce partial semantic analyses, such as statistical 
word-sense and semantic role disambiguation techniques. In addition, the graphical formalism 
leads to easier formal analysis. Consider the LF for the sentence The three small dogs frequently 
eat bones shown in Figure 1. There are many types of objects evoked by this sentence, captured 
by the nodes in the graph. First, there is the event of the dogs liking bones, where the node cap- 
tures a reified event in a Davidsonian-style (Davidson, 1967) representation. Next we have prop- 
erties like small, which are reified in the same way. The interpretation of the three small dogs re- 
quires several nodes, including a set of size three, consisting of dogs that are small (rather than 
the set being small). Furthermore, as a definite description, we expect to be able to identify the 
set of dogs from the discourse context. Finally, we need to capture that bones refers to a kind of 



object rather than, say, a specific set of bones. Note that each node indicates a specifier (indicat- 
ing the type of node, be it a generalized quantifier, event identifier, or kind) as well as the type of 
the object. This is critical for subsequent discourse processing. Nodes are connected by arcs that 
indicate argument relations (semantic roles from the LF ontology) and dependency relationships 
(critical for resolving the unscoped LF into a fully scoped formal representation). There are two 
types of arcs: those connecting to terms and those connecting to predicate/formulas. The distinc- 
tion between them is important for the quantifier scoping algorithm. 

The LF formalism has additional features to capture aspects such as coreference relations, im- 
plicit arguments to predicates, complex quantification (e.g., almost all dogs, every other dog, all 
but one), modals, tense, aspect, negation, complex adverbials, numbers, time and date expres- 
sions, and other complicated phenomena. 

The Core Parsing Technology: The grammar is a lexicalized context-free grammar, augmented 
with feature structures and feature unification. The grammar is motivated from X-bar theory, and 
draws on principles from GPSG (e.g., head and foot features) and HPSG. While it has a context- 
free backbone, the parsing is best seen as a search through possible logical forms. The search in 
the parser is pruned by domain-general selectional restrictions from the ontology to eliminate 
semantically anomalous sense combinations during parsing. The parser builds constituent/logical 
forms bottom-up using a best-first search strategy similar to A*, combining pre-specified rule and 
lexical weights and the influences of the statistical techniques described below. The search ter- 
minates when a pre-specified number of spanning constituents have been found or a pre-specified 
maximum chart size is reached. The chart is then searched using a dynamic programming algo- 
rithm to find the least cost sequence of constituent/logical forms according to a scoring function 
that can be varied by genre being processed. 

The current lexicon contains approximately 7,000 hand built lexical lemmas (with morphological 
variants, yielding 17000 words), each identified with a semantic concept in the LF ontology that 
specifies the selectional restrictions on its possible arguments and modifiers. 

The Broad Coverage system: To attain broader coverage, we used input from a variety of ex- 
ternal resources. We built a subsystem for unknown word lookup that accesses lexical resources 
such as Wordnet (Miller, 1995) and Comlex (Macleod et al., 1994). The WordNet senses are 
mapped to the LF ontology at an abstract level and the combined resource information is used to 
build lexical entries with approximate semantic and syntactic structures for words not in the core 
lexicon. Because the information in such entries is underspecified, the parser must deal with sig- 
nificantly increased levels of ambiguity when dealing with such words. 

Because it was developed for speech applications, the parser is designed to accept word lattices 
as input so speech recognizers can pre-populate the chart with different word hypotheses, letting 
the parser choose among them based on what entries make the best overall interpretations. We 
use the same mechanism for integrating a corpora-based preprocessors such as a named entity 
recognizer, which adds hypotheses to the input chart about possible named entities. Note these 
are hypotheses-the parser does not have to use them. As with word hypotheses from a speech 
recognizer, the parser will choose the input hypotheses that lead to the best overall interpretation. 
In addition, we can use statistical part-of-speech and word sense disambiguation techniques to 
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Figure 2: Extending and Guiding Deep Parsing 

suggest likely interpretations of words in the input chart. Using techniques similar to Swift et al. 
(2004) and Cahill et al. (2007), the extended system also receives constituent structure advice 
from a state-of-the-art statistical parser. For the results reported here, we used the out-of-the-box 
unlexicalized stochastic context-free grammar parser from Stanford (Klein and Manning, 2003). 
Again, these are preferences that help guide parsing, but do not limit the range of possible overall 
interpretations. The system with these extensions is shown in Figure 2. The parts with dotted out- 
lines are under development and not included in the current evaluations 

Evaluation 

We performed an evaluation of the coverage and accuracy of the extended parser on seven para- 
graphs (Text 1-7) submitted by seven different research groups for a common evaluation at the 
workshop on the semantics of text processing (Bos and Delmonte, 2008). Below is a sample 
paragraph, Text #6, which proved the most challenging for our system: 

Amid the tightly packed row houses of North Philadelphia, a pioneering urban farm is providing 
fresh local food for a community that often lacks it, and making money in the process. Greensgrow, 
a one-acre plot of raised beds and greenhouses on the site of a former steel-galvanizing factory, is 
turning a profit by selling its own vegetables and herbs as well as a range of produce from local 
growers, and by running a nursery selling plants and seedlings. The farm earned about $10,000 on 
revenue of $450,000 in 2007, and hopes to make a profit of 5 percent on $650,000 in revenue in 
this, its 10th year, so it can open another operation elsewhere in Philadelphia. 

We denned precision and recall measures on the LF. Given a gold-standard LF-graph, we can 
evaluate the LF graph produced by a system by defining node and edge scoring criteria and then 
computing the node alignment that maximizes the overall score. The evaluation metric between a 
gold LF graph G and a test LF graph T is then defined as the maximum score produced by any 
node/edge alignment from the gold to the test LF. 

We parsed the seven texts to obtain the LF-graphs for each. Then we took each paragraph and 
hand-built a gold-standard LF-graph for each. Using the precision and recall measures discussed 
above, the base parser attained 61.4% precision and 67.2% recall on the unseen data. 
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Prec. 61.40% 74.4% 78.2% 79.0% 

Recall 67.20% 74.4% 82.6% 82.8% 

Table 1: Evaluation on combined texts 

We then performed a limited amount of lexical and 
grammatical development based on the evaluation: 
adding 26 new lexical items (17 nouns, 1 verb, 7 
adjectives and 1 adverb), 33 new or modified 
senses for existing lexical items, 7 new ontology 
concepts, and two grammar rules. Word sense 
modifications included adding a new argument 
structure pattern to a lexical entry and/or a new semantic role to an existing concept. For exam- 
ple, in some cases an ontology concept included an agent role, but not one for a more general 
cause role. We did not attempt to add all unknown words and senses; Aside from the proper 
nouns, there are still 14 unknown words (e.g., merchandising, propellant, nitrocellulose) remain- 
ing in the texts for which we derive entries for analysis from unknown word lookup. 

After this development, we estimated the potential of the extended system by rerunning the base 
parser and then several combinations of the extensions. By adding named-entity recognition, un- 
known word lookup, and part of speech tagging advice, performance rises to 78.2% precision 
and 82.6% recall. Adding advice on constituent bracketing using the Stanford parser gave only a 
slight improvement. These results are summarized in Table 1. Because almost all prior work has 
not attempted an evaluation of deep understanding, there is little prior work to compare to. How- 
ever, just on the face of the scores, we think we have made a convincing case that domain- 
independent, broad-coverage, deep understanding of language is a technology within reach. 

3. Using A Collaborative Problem Solving Agent for One-shot Task Learning 

We developed the generic collaborative problem solving model using several different applica- 
tions as test cases. The most significant system is one that focuses on agents that can acquire the 
task models they need from intuitive language-rich demonstrations by humans. These agents use 
the same collaborative architecture to learn tasks as they do to perform tasks. The system dis- 
plays an integrated intelligence that results from sophisticated natural language understanding, 
reasoning, learning, and acting capabilities unified within a collaborative agent architecture. 

Background on Task Learning 

In previous work, researchers have attempted to learn new tasks by observation, creating agents 
that learn through observing an expert's demonstration (Angros et al. 2002, Lau & Weld 1999; 
Lent & Laird 2001). These techniques require observing multiple examples of the same task, and 
the number of training examples required increases dramatically with the complexity of the task. 
To be effective, however, collaborative assistants need to be able to acquire tasks much more 
quickly - typically from a single example, possibly with some clarification dialogue. To enable 
this, in our system the teacher not only demonstrates the task, but also gives a "play-by-play" 
description of what they are doing. This is a natural method that people already use when teach- 
ing other people, and our system exploits this natural capability. By combining the information 
from understanding with prior knowledge and a concrete example demonstrated by the user, our 
system (called PLOW) can learn complex tasks involving iterative loops in a single short training 
session. 



PLOW learns tasks that can be performed within a web browser. These are typically information 
management tasks, e.g., finding appropriate sources, retrieving information, filing requisitions, 
booking flights, and purchasing things, Figure 3 shows the user interface as it was used in the 
evaluation. The main window on the left is simply the Mozilla browser, instrumented so that 
PLOW can monitor user actions. On the right is the procedure that PLOW has learned so far, 
summarized back in language from the task model using PLOW'S language generation capabili- 
ties. Across the bottom is a chat window that shows the most recent interactions. The user can 
switch between speech and keyboard throughout the interaction. 

The Agent Architecture 

The understanding components combine natural language (speech or keyboard) with the ob- 
served user actions on the GUI. After full parsing, semantic interpretation and discourse interpre- 
tation produce plausible intended actions. These are passed to the collaborative problem solving 
(CPS) agent, which settles on the most likely intended interpretation given then current problem 
solving context. Depending on the actions, the CPS agent then drives other parts of the system. 
For example, if the recognized user action was to demonstrate the next step in the task, the CPS 
agent invokes the task learning, which if successful will update the task models in the knowledge 
base. If, on the other hand, the recognized user intent was to request the execution of a (sub)task, 
the CPS agent attempts to look up a task that can accomplish this action in the knowledge base. 
It then invokes the execution system to perform the task. During collaborative learning, the sys- 
tem may actually do both - it may learn a new step in the task being learned, but because it al- 
ready knows how to do the subtask, it performs it for the user. This type of collaborative execu- 
tion while learning is critical in enabling the learning of iterative steps without requiring the user 
to tediously demonstrate each loop through the iteration. 

While we have shown examples of how integrating language, dialogue, reasoning and learning 
has great potential for effective one-shot task learning, the real test is whether ordinary users can 
quickly learn to use ther*"* 
system to teach new pro 
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Figure 3: The PLOW Interface 



teaching the system. 

In August 2006, we delivered a version of the PLOW system to independently contracted evalu- 
ators. At that point, we had developed the system to ensure that we (the developers) could effec- 
tively teach PLOW to learn how to answer seventeen pre-determined test question templates. 
The evaluators recruited 16 test subjects who received general training on how to use PLOW and 
many other applications that were part of the overall project evaluation. Among these were three 
other task learning systems: one learns entirely from passive observation, one used a sophisti- 
cated GUI primarily designed for editing procedures but extended to allow the definition of new 
procedures, and the third used an NL-like query and specification language that required users to 
have a detailed knowledge of HTML producing the web pages. 

After training, the subjects then performed the first part of the test, in which they had to use dif- 
ferent systems to teach some subset of the predefined test questions. Seven of these involved the 
PLOW system. Once the procedures were learned by the systems, the evaluators created a set of 
new test examples by specifying values for the input parameters to the task and then scored the 
results from executing the learned task models using predetermined scoring metrics individual- 
ized to each question. The PLOW system did well on this test, scoring 2.82 out of 4 across all 
test questions and the 16 subjects. 

The second part of the test involved a set of 10 new "surprise" test questions not previously seen 
by any of the developers (see Figure 1). Some of these were close variants to the original test 
questions, and some were entirely new tasks. The sixteen subjects had one work day to teach 
whichever of these surprise tasks they wished, using whichever of the task learning systems they 
wished. As a result, this test reveals not only the core capability for learning new tasks, but also 
evaluates the usability of the four task learning systems. 

PLOW did very well on this test on all measures. Out of the 16 users, thirteen of them used 
PLOW to teach at least one question. Of the other systems, the next most used system was used 
by eight users. If we look at the total number of tasks successfully taught, we see that PLOW was 
used to teach 30 out of the 55 task models that were constructed during the day. Furthermore, the 
tasks constructed using PLOW received the highest average score in the testing (2.2 out of 4). 

Concluding Remarks 

This project has developed significant generic technology for dialogue systems that is reusable 
across domains. We have developed and demonstrated the potential of broad-covergae deep lan- 
guage understanding, and developed a generic collaborative problems solving architecture that 
can enable sophisticated mixed-intiative dialogue,. As demonstrated in the PLOW system. 
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